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Abstract
Probabilistic cloning was first proposed by Duan and Guo. Then Pati
established a novel cloning machine (NCM) for copying superposition of
multiple clones simultaneously. In this paper, we deal with the novel
cloning machine with supplementary information (NCMSI). For the case
of cloning two states, we demonstrate that the optimal efficiency of the
NCMSI in which the original party and the supplementary party can perform
quantum communication equals that achieved by a two-step cloning protocol
wherein classical communication is only allowed between the original and
the supplementary parties. From this equivalence, it follows that NCMSI
may increase the success probabilities for copying. Also, an upper bound
on the unambiguous discrimination of two nonorthogonal pure product states
is derived. Our investigation generalizes and completes the results in the
literature.

PACS numbers: 03.67.−a, 03.65.Ud

1. Introduction

Over the past decade, quantum computation and quantum information has been given
extensively attention due to the more power in essence than classical computation [1]. While
the characteristics of quantum principles such as quantum superposition and entanglement
essentially enhance the power of quantum information processing, the unitarity and linearity
of quantum physics also lead to some impossibilities—the no-cloning theorem [2–4] and
the no-deleting principle [5]. The linearity of quantum theory makes an unknown quantum
state unable to be perfectly copied [2, 3] and deleted [5], and two nonorthogonal states
are not allowed to be precisely cloned and deleted as a result of the unitarity [4, 6, 7],
that is, for nonorthogonal pure states |ψ1〉 and |ψ2〉, no physical operation in quantum
mechanics can exactly achieve the transformation |ψi〉 → |ψi〉|ψi〉(i = 1, 2). This has been
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generalized to mixed states and entangled states [8, 9]. Remarkably, these restrictions provide
a valuable resource in quantum cryptography [10], because they forbid an eavesdropper to
gain information on the distributed secret key without producing errors.

Recently Jozsa [11] and Horodecki et al [12] further clarified the no-cloning theorem and
the no-deleting principle from the viewpoint of conservation of quantum information, and in
light of this point of view two copies of any quantum state contain more information than one
copy; in contrast, two classical states have only the same information as any one of the two
states. Specifically, Jozsa [11] verified that if supplementary information, say a mixed state ρi

is supplemented, then there is a physical operation

|ψi〉 ⊗ ρi → |ψi〉|ψi〉 (1)

if and only if there exists physical operation

ρi → |ψi〉, (2)

where by physical operation we mean a completely positive trace-preserving map, and {|ψi〉}
is any given finite set of pure states containing no orthogonal pairs of states. This result implies
that the supplementary information must be provided as the copy |ψi〉 itself, since the second
copy can always be generated from the supplementary information, independently of the
original copy. Therefore, this result may show the ‘permanence’ of quantum information; that
is, to get a copy of quantum state, the state must already exist somewhere. Notwithstanding,
cloning quantum states with a limited degree of success has been proved always possibly. A
natural issue is that if the supplementary information is added in a novel cloning machine
(NCM) by Pati [13], then whether the optimal efficiency of the machine may be increased.
This problem will be positively addressed in this paper.

Let us briefly recall the pioneers’ works regarding quantum cloning, and the more detailed
references may be referred to Fiurášek [14] therein. In general, there are two kinds of cloners.
One is the universal quantum-copying machine (UQCM) firstly introduced by Buz̆ek and
Hillery [15], and this kind of machines is deterministic and does not need any information
about the states to be cloned, so it is state independent. To be more precise, the UQCM
obtained by Buz̆ek and Hillery [15] is described by the following unitary transformation U:

|0〉a|Q〉x →
√

2
3 |00〉ab|↑〉 +

√
1
3 |+〉ab|↓〉, (3)

|1〉a|Q〉x →
√

2
3 |11〉ab|↓〉 +

√
1
3 |+〉ab|↑〉, (4)

where |Q〉x is the state of the copying device (auxiliary state), |↑〉 and |↓〉 are an orthonormal
basis states and |+〉ab = 1√

2
(|10〉ab + |01〉ab). The ‘universal’ means that for any pure

state |s〉a = α|0〉a + β|1〉a to be cloned, the distances Da = Tr
[
ρ(out)

a − ρ(id)
a

]2
and Dab =

Tr
[
ρ

(out)
ab − ρ

(id)
ab

]2
are independent of α, that is to say, the efficiency of cloning under these

measures does not rely on the original state |s〉a , where by denoting |�〉(out)
abx = U(|s〉a|Q〉x),

then the density operator ρ
(out)
abx = |�〉(out) (out)

abx abx〈�|, the real output in the system ab is
ρ

(out)
ab = Trx

[
ρ

(out)
abx

]
, the real output in the system a is ρ(out)

a = Trb
[
ρ

(out)
ab

]
; by contrast, the ideal

output in the system ab is ρ
(id)
ab = ρ(id)

a

⊗
ρ

(id)
b , where ρ(id)

a = |s〉a a〈s|, ρ(id)
b = |s〉b b〈s|, in

which |s〉b = α|0〉b + β|1〉b. (A direct calculation shows that Da = 1
18 for the above UQCM.)

To date many authors have deeply dealt with this kind of cloning devices (for example,
[16–26]). By the way, recently the universal quantum deleting machines have also been
considered [27, 28].
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The other kind of cloners is state dependent, since it needs some information from the
states to be cloned. Furthermore, this kind of cloning machines may be divided into three
fashions of cloning: first is probabilistic cloning machines proposed firstly by Duan and Guo
[29, 30], and then by Chefles and Barnett [31] and Pati [13], and Han et al [32], that can
clone linearly independent states with nonzero probabilities. Duan and Guo’s machine can be
stated as follows: for states secretly chosen from the set S = {|ψ1〉, |ψ2〉, . . . , |ψn〉}, there is
a unitary operator U such that

U(|ψi〉|�〉|P0〉) = √
ri |ψi〉|ψi〉|P0〉 +

n∑
j=1

cij

∣∣�(j)

AB

〉|Pj 〉, (i = 1, 2, . . . , n), (5)

if and only if states |ψ1〉, |ψ2〉, . . . , |ψn〉 are linearly independent, where ri is the probability
of success for copying |ψi〉, |�〉 is a blank state, |P0〉, |P1〉, . . . , |Pn〉 are probe states and
orthonormal, and

∣∣�(j)

AB

〉
are n normalized states of the composite system AB. Therefore, a

general unitary evolution together with a post-selection by measurement results yields faithful
copies of the input states with certain probabilities. Indeed, a more general unitary evolution
of the system ABP can be decomposed as the form

U(|ψi〉|�〉|P0〉) = √
ri |ψi〉|ψi〉|P (i)〉 +

√
1 − ri

∣∣�(i)
ABP

〉
, (i = 1, 2, . . . , n), (6)

that can be stated as: the states |ψ1〉, |ψ2〉, . . . , |ψn〉 can be probabilistically cloned with
efficiencies ri if and only if the matrix X(1) − √

�X
(2)
P

√
�+ is positive semidefinite,

where matrices X(1) = [〈ψi |ψj 〉],
√

� = diag(r1, r2, . . . , rn),X
(2)
P = [〈ψi |ψj 〉2〈P (i)|P (j)〉];

|P0〉, |P (i)〉 are normalized states of the probe P (not generally orthogonal) and
∣∣�(i)

ABP

〉
are n

normalized states of the composite system ABP (not generally orthogonal, but it is required
that

〈
P (i)

∣∣�(j)

ABP

〉 = 0 for any i, j = 1, 2, . . . , n). The success probabilities ri and rj satisfy
that

ri + rj

2
� 1

1 + |〈ψi |ψj 〉| , (7)

where |〈ψi |ψj 〉| �= 1 is assumed.
Second is deterministic cloners first investigated by Bruß et al [33] and then by Chefles

and Barnett [34]. Such a deterministic cloning machine is described by the unitary operator U

U(|ψi〉⊗M |�〉⊗(N−M)) = |αi〉, (i = 1, 2, . . . , n), (8)

where |�〉 is a blank state and |αi〉 are the output states cloned. According to [33] the global
fidelity F of this cloning device can be expressed as

F =
n∑

i=1

pi |〈αi |ψi〉⊗N |2, (9)

where pi is the a priori probability of the state |ψi〉⊗M chosen. From [33, 34] it follows
that the optimal output state |αi〉 must lie in the subspace spanned by the exact clones
|ψ1〉⊗N, |ψ2〉⊗N, . . . , |ψn〉⊗N .

Third is hybrid cloner studied by Chefles and Barnett [32], that combines deterministic
cloner with probabilistic one. The basic process of cloning is that firstly the initial states,
say

∣∣ψ1
1

〉
and

∣∣ψ1
2

〉
, are separated with certain probability PS , i.e. a non-unitary transformation

makes with certain probability PS the states
∣∣ψ1

1

〉
and

∣∣ψ1
2

〉
become states |φ1〉 and |φ2〉 [31],

such that

|〈φ1|φ2〉| �
∣∣〈ψ1

1

∣∣ψ1
2

〉∣∣. (10)
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Such a transformation is implemented by some linear operators ASk and AFk satisfying∑
k

(
A

†
SkASk + A

†
FkAFk

) = 1̂, (11)

where 1̂ is the identity operator, and

ASk

∣∣ψ1
i

〉 = ski |φi〉, AFk

∣∣ψ1
i

〉 = fki |φi〉,
for i = 1, 2, where

PS =
2∑

i=1

1

2

∑
k

|ski |2 �
1 − ∣∣〈ψ1

1

∣∣ψ1
2

〉∣∣
1 − |〈φ1|φ2〉| . (12)

Whereafter, by utilizing deterministic cloner for copying the states |φ1〉 and |φ2〉, the states
∣∣ψ2

1

〉
and

∣∣ψ2
2

〉
are determinately obtained. Therefore, such a cloning scheme obtain the appropriate

states
∣∣ψ2

i

〉
for copying

∣∣ψ1
i

〉
(i = 1, 2). (Notably, these quantum cloning machines stated

above have been applied to many quantum cryptographic protocols [35–37].)
The probabilistic machine by Duan and Guo [29, 30] can be thought of as |ψ〉 → |ψ〉⊗2

cloning. A question addressed by many authors is that given a quantum state, whether it is
possible for a device to produce |ψ〉 → |ψ〉⊗2, |ψ〉 → |ψ〉⊗3, . . . , |ψ〉 → |ψ〉⊗(m+1), in a
deterministic or probabilistic way. Motivated by this proposal and the idea of probabilistic
cloning, Pati [13] established a NCM that could produce |ψ〉 → |ψ〉⊗(m+1)(m = 1, 2, . . . , k)

clones simultaneously, which appear in a linear superposition of all possible multiple copies
with respective probabilities. Therefore, Pati’s NCM [13] generalizes Duan and Guo’s cloning
machine [29, 30]. For avoiding repetition, we will describe the NCM in sections 2 and 3 in
detail, and differentiate between our results and the previous those related. In this paper,
we deal with the NCM with supplementary information (NCMSI), and present an equivalent
characterization of such a quantum cloning device in terms of a two-step cloning protocol
in which the original and the supplementary parties are only allowed to communicate with
classical channel.

The remainder of the paper is organized as follows. In section 2, we first introduce
the existing results regarding probabilistic cloning with supplementary information, and
then present our main contributions concerning NCMSI. Section 3 is the detailed
demonstration of our major outcomes. In this section, we first provide a number of related
unitary transformations describing cloning machines, and the corresponding inequalities
characterizing the existence of these unitary transformations are then given; afterwards, we
prove the main results expressed by theorems 1 and 2. Also we derive an upper bound for
unambiguous discrimination of the set {|ψ1〉|φ1〉, |ψ2〉|φ2〉} (remark 1). Finally, in section 4
we summarize our results obtained, mention some potential of applications, and address a
number related issues for further consideration.

In addition, though some transformations describing cloning machines have been
introduced in section 1, in the interest of readability, we would like to present partially
them again with somewhat different forms in sections 2 and 3 to lead to our results.

2. Preliminaries and main results

In this section, we first give the existing results by Azuma et al [38], and then present our main
results.

As pointed out above, Jozsa [11] and Horodecki et al [12] verified the no-cloning theorem
and the no-deleting principle by utilizing supplementary information and conservation of
quantum information, respectively. Then we may naturally address that if supplementary
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information is added in the NCM, then whether the success probability for copying will be
increased. Recently, Azuma et al [38] suggested probabilistic cloning with supplementary
information by combining probabilistic cloning and supplementary information. Specifically,
for any two nonorthogonal states |ψ1〉 and |ψ2〉, and supplementary states |φ1〉 and |φ2〉, Azuma
et al [38] showed the following implication: if there exists the unitary operator U

U(|ψi〉|φi〉|P0〉) = √
ri |ψi〉⊗(m+1)|P (i)〉 +

√
1 − ri

∣∣�(i)
abp

〉
, (i = 1, 2), (13)

then there are corresponding unitary operators UB and UA

UB(|φi〉|�〉|P0〉) =
√

rB
i |ψi〉⊗m

∣∣P (i)
B

〉
+

√
1 − rB

i

∣∣�(i)
abpB

〉
, (i = 1, 2), (14)

UA(|ψi〉|�〉|P0〉) =
√

rA
i |ψi〉⊗(m+1)

∣∣P (i)
A

〉
+

√
1 − rB

i

∣∣�(i)
abpA

〉
, (i = 1, 2), (15)

such that rB
i +

(
1− rB

i

)
rA
i � ri (i = 1, 2), where ri, r

B
i and rA

i denote the success probabilities

in the three machines, respectively, and
〈
P (i)

∣∣�(j)

abp

〉 = 〈
P

(i)
B

∣∣�(j)

abpB

〉 = 〈
P

(i)
A

∣∣�(j)

abpA

〉 = 0 for any
i, j ∈ {1, 2}. The above implication means that when the state chosen from two nonorthogonal
states, the best efficiency of producing m + 1 copies is always achieved by a two-step cloning
protocol in which the auxiliary party first tries to produce m copies from the supplementary
state, and if it fails, then the original state is used to produce m + 1 copies by means of the
probabilistic cloning device proposed by Duan and Guo [29, 30]. For the sake of simplicity,
we may represent the cloning devices described by equations (13), (14), (15) as

|ψi〉|φi〉 ri−→ |ψi〉m+1, (i = 1, 2), (16)


⇒ |φi〉
rB
i−→ |ψi〉m and |ψi〉

rA
i−→ |ψi〉m+1, (i = 1, 2). (17)

However, when the state chosen from n states, with n > 2 and without orthogonal pairs of
states, the above implication described by equations (16), (17) may not hold again, i.e. the
best efficiency is not always reached by such a two-step cloning protocol [38].

In this paper, we will show the following equivalent relation: for any two nonorthogonal
states |ψ1〉 and |ψ2〉, and supplementary states |φ1〉 and |φ2〉, there exists the unitary
operator U:

U(|ψi〉|φi〉|P0〉) =
m∑

k=1

√
r

(i)
k |ψi〉⊗(k+1)|0〉⊗(m−k)

∣∣P (i)
k

〉
+

N∑
l=m+1

√
f

(i)
l |�l〉AB |Pl〉, (i = 1, 2),

(18)

where
∣∣P (i)

1

〉
,
∣∣P (i)

2

〉
, . . . ,

∣∣P (i)
m

〉
, |Pm+1〉, |Pm+2〉, . . . , |PN 〉 are orthonormal for any i ∈ {1, 2},

if and only if there are unitary operators UB and UA:

UB(|φi〉|�〉|P0〉) =
m∑

k=1

√
r

(i)
k,B |ψi〉⊗(k)|0〉⊗(m−k+1)

∣∣P (i)
k,B

〉

+
N∑

l=m+1

√
f

(i)
l,B

∣∣�(B)
l

〉
AB

|Pl,B〉, (i = 1, 2), (19)

UA(|ψi〉|�〉|P0〉) =
m∑

k=1

√
r

(i)
k,A|ψi〉⊗(k+1)|0〉⊗(m−k)

∣∣P (i)
k,A

〉

+
N∑

l=m+1

√
f

(i)
l,A

∣∣�(A)
l

〉
AB

|Pl,A〉, (i = 1, 2), (20)
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where
∣∣P (i)

1,B

〉
,
∣∣P (i)

2,B

〉
, . . . ,

∣∣P (i)
m,B

〉
, |Pm+1,B〉, |Pm+2,B〉, . . . , |PN,B〉 are orthonormal, and, also,∣∣P (i)

1,A

〉
,
∣∣P (i)

2,A

〉
, . . . ,

∣∣P (i)
m,A

〉
, |Pm+1,A〉, |Pm+2,A〉, . . . , |PN,A〉 are orthonormal for any i ∈ {1, 2};

r
(i)
k , r

(i)
k,B and r

(i)
k,A represent the success probabilities for producing |ψi〉⊗(k+1), |ψi〉⊗k and

|ψi〉⊗(k+1), respectively, in these three cloning devices.
Furthermore, it is satisfied that if the unitary transformation described by equation (18)

holds, then there exist unitary transformations described by equations (19), (20), such that
m∑

k=1

r
(i)
k,B +

(
1 −

m∑
k=1

r
(i)
k,B

)
m∑

k=1

r
(i)
k,A �

m∑
k=1

r
(k)
i , (i = 1, 2), (21)

conversely, if equations (19), (20) hold, then there is unitary transformation by equation (18)
satisfying

m∑
k=1

r
(i)
k,B +

(
1 −

m∑
k=1

r
(i)
k,B

)
m∑

k=1

r
(i)
k,A �

m∑
k=1

r
(k)
i , (i = 1, 2). (22)

In the interest of simplicity, we may represent the above equations (18), (19), (20) as

|ψi〉|φi〉
∑m

k=1 r
(i)
k−→

m∑
k=1

|ψi〉⊗(k+1), (i = 1, 2), (23)

⇐⇒

|φi〉
∑m

k=1 r
(i)
k,B−→

m∑
k=1

|ψi〉⊗(k) (24)

and

|ψi〉
∑m

k=1 r
(i)
k,A−→

m∑
k=1

|ψi〉⊗(k+1), (i = 1, 2). (25)

Note that transformation (20) is exactly the NCM studied by Pati [13] and stated above. The
above equivalence shows that the optimal efficiency of the NCMSI in which the original
party and the supplementary party can perform quantum communication equals the optimal
efficiency achieved by the two-step cloning protocol wherein classical communication is only
allowed between the original and the supplementary parties. Therefore, in regard to the
optimal success probabilities, if

∑m
k=1 r

(i)
k,B > 0, then

∑m
k=1 r

(i)
k >

∑m
k=1 r

(i)
k,A, (i = 1, 2),

which implies that the NCMSI may increase the success probability. As well, if we take only
one r

(i)
k,B and one r

(i)
k,A nonzero for some k, then our right implication reduces to the implication

described by transformations (16) and (17). Therefore, our result generalizes and completes
the result proved by Azuma et al [38].

3. Proofs of main results

Firstly, for the sake of readability, we still quickly review the results by Azuma et al [38], and
present some transformations, some of which were indeed described before.

Probabilistic cloning machine firstly posed by Duan and Guo [29, 30] describes that for
any state set {|ψ1〉, |ψ2〉, . . . , |ψk〉}, there exists the unitary operator U such that

U(|ψi〉|�〉|P0〉) = √
ri |ψi〉|ψi〉|P (i)〉 +

√
1 − ri

∣∣�(i)
ABP

〉
, (i = 1, 2, . . . , k), (26)

if and only if the matrix X(1) − √
�X(2)

√
�† is positive semidefinite, where X(1) =

[〈ψi |ψj 〉], X(2) = [〈ψi |ψj 〉2〈P (i)|P (j)〉],√� =
√

�† = diag(
√

r1,
√

r2, . . . ,
√

rk). The
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efficiency of cloning is as
∑k

i=1 piri if pi are the probabilities for choosing states |ψi〉
(i = 1, 2, . . . , k).

Azuma et al [38] showed that for two nonorthogonal states, |ψi〉(i = 1, 2), if there
exists the unitary operator U : |ψi〉|φi〉 → √

ri |ψi〉⊗(m+1) (for simplicity, they left out the
failure item and the states of the probe device), then there also exist the unitary operator

UA : |ψi〉 →
√

rA
i |ψi〉⊗(m+1) and the unitary operator UB : |φi〉 →

√
rB
i |ψi〉⊗(m) satisfying

rB
i +

(
1− rB

i

)
rA
i � ri (i = 1, 2). For k states with k � 3, they verified that there exist state sets

{|ψi〉} and {|φi〉}, as well as the unitary operator U above, such that for any unitary operators
UA and UB above, it holds that rA

i = 0 (i = 1, 2, . . . , n) and
∑k

i=1
1
n
ri >

∑k
i=1

1
n
rB
i .

We enter on our discussion. Suppose Alice holds the original copy |ψi〉 and Bob possesses
the supplementary information |φi〉 (i = 1, 2). If Alice and Bob are allowed to communicate
with one-way quantum channel from Bob to Alice, then a single party holding both the original
and the supplementary information |ψi〉|φi〉 performs the following cloning process described
by the unitary operator U:

U(|ψi〉|φi〉|P0〉) =
m∑

k=1

√
r

(i)
k |ψi〉⊗(k+1)|0〉⊗(m−k)

∣∣P (i)
k

〉
+

N∑
l=m+1

√
f

(i)
l |�l〉AB |Pl〉, (i = 1, 2),

(27)

where 0 � r
(i)
k � 1 for k = 1, 2, . . . , m and

∑m
k=1 r

(i)
k < 1 (in terms of [13],

∑m
k=1 r

(i)
k = 1

is impossible), |P0〉,
∣∣P (i)

k

〉
and |Pl〉 are the states of the probing device, satisfying that∣∣P (i)

1

〉
,
∣∣P (i)

2

〉
, . . . ,

∣∣P (i)
m

〉
, |Pm+1〉, |Pm+2〉, . . . , |PN 〉 are orthonormal for i = 1, 2. Moreover,

N > m, |0〉 is the state of the ancillary system B, r
(i)
k and f

(i)
l are the success and the failure

probabilities, respectively. If pi are a priori probabilities for choosing |ψi〉|φi〉 (i = 1, 2),
then the global success probability Ps for copying is

Ps =
2∑

i=1

pi

m∑
k=1

r
(i)
k . (28)

If Alice and Bob only can use classical channel for communication, they may respectively run
the following machines described by unitary operators UA and UB , where UA is exactly Pati’s
NCM [13]:

UA(|ψi〉|�〉|P0〉) =
m∑

k=1

√
r

(i)
k,A|ψi〉⊗(k+1)|0〉⊗(m−k)

∣∣P (i)
k,A

〉

+
N∑

l=m+1

√
f

(i)
l,A

∣∣�(A)
l

〉
AB

|Pl,A〉, (i = 1, 2), (29)

such that 0 � r
(i)
k,A � 1 for k = 1, 2, . . . , m, where |P0〉,

∣∣P (i)
k,A

〉
and |Pl,A〉 are the states of

the probe device, satisfying that
∣∣P (i)

1,A

〉
,
∣∣P (i)

2,A

〉
, . . . ,

∣∣P (i)
m,A

〉
, |Pm+1,A〉, |Pm+2,A〉, . . . , |PN,A〉 are

orthonormal for i = 1, 2. If p
(A)
i are a priori probabilities for choosing |ψi〉 (i = 1, 2), then

the global success probability P (A)
s for copying is

P (A)
s =

2∑
i=1

p
(A)
i

m∑
k=1

r
(i)
k,A. (30)
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UB is as follows:

UB(|φi〉|�〉|P0〉) =
m∑

k=1

√
r

(i)
k,B |ψi〉⊗k|0〉⊗(m−k+1)

∣∣P (i)
k,B

〉

+
N∑

l=m+1

√
f

(i)
l,B

∣∣�(B)
l

〉
AB

|Pl,B〉, (i = 1, 2), (31)

such that 0 � r
(i)
k,B � 1 for k = 1, 2, . . . , m, where |P0〉,

∣∣P (i)
k,B

〉
and |Pl,B〉 are the states of

the probe device, satisfying that
∣∣P (i)

1,B

〉
,
∣∣P (i)

2,B

〉
, . . . ,

∣∣P (i)
m,B

〉
, |Pm+1,B〉, |Pm+2,B〉, . . . , |PN,B〉 are

orthonormal for i = 1, 2. If p
(B)
i are a priori probabilities for choosing |ψi〉 (i = 1, 2), then

the global success probability P (B)
s for copying is

P (B)
s =

2∑
i=1

p
(B)
i

m∑
k=1

r
(i)
k,B . (32)

If Alice and Bob only can use one-way classical channel for communication from Bob to
Alice, then Bob first performs machine described by equation (31), and tells Alice the result of
success or failure. If Bob succeeds, Alice only preserves her copy as is; otherwise, Alice runs
the machine described by equation (29). Therefore, in this case, the success probability
for producing quantum superposition of multiple clones

∑m
k=1 |ψi〉⊗(k+1) when inputting

|ψi〉|φi〉 is

m∑
l=1

r
(i)
k,B +

(
1 −

m∑
l=1

r
(i)
l,B

)
m∑

l=1

r
(i)
k,A. (33)

Similarly, if Alice and Bob can use only one-way classical channel for communication from
Alice to Bob, then Alice first performs Pati’s machine described by equation (29), and then
tells Bob the result of success or failure. If Alice succeeds, Bob does nothing; otherwise, Bob
runs machine by equation (31). Thus, it is seen that the success probability for producing
quantum superposition of multiple clones

∑m
k=1 |ψi〉⊗(k+1) with input |ψi〉|φi〉 is

m∑
k=1

r
(i)
k,A +

(
1 −

m∑
l=1

r
(i)
l,A

)
r

(i)
k,B . (34)

If Alice and Bob can use two-way classical channel for communication, i.e. they can
communicate each other, then they first independently carry out machines described by
equations (29), (31) and, afterwards, inform the other of the outcome produced. Therefore, the
success probability for producing quantum superposition of multiple clones

∑m
k=1 |ψi〉⊗(k+1)

with input |ψi〉|φi〉 will be

1 −
(

1 −
m∑

k=1

r
(i)
k,A

)(
1 −

m∑
k=1

r
(i)
k,B

)
=

m∑
k=1

r
(i)
k,A +

m∑
k=1

r
(i)
k,B −

m∑
k=1

r
(i)
k,A

m∑
k=1

r
(i)
k,B . (35)

Notably, whichever classical communication we choose, it is clearly seen that with input
|ψi〉|φi〉, the success probabilities for producing quantum superposition of multiple clones∑m+1

k=1 |ψi〉⊗(k+1) are equal.
In what follows, we denote α = 〈ψ1|ψ2〉, β = 〈φ1|φ2〉, pk = 〈

P
(1)
k

∣∣P (2)
k

〉
, pk,A =〈

P
(1)
k,A

∣∣P (2)
k,A

〉
, pk,B = 〈

P
(1)
k,B

∣∣P (2)
k,B

〉
. Now we note that equations (27), (29), (31) hold if and
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only if the matrices

Z(1) −
m∑

k=1

√
�kG

(m+1)

√
�

†
k,

X(1) −
m∑

k=1

√
�k,AG

(m+1)
A

√
�

†
k,A,

Y (1) −
m∑

k=1

√
�k,BG

(m+1)
B

√
�

†
k,B,

are positive semidefinite, respectively, where Z(1) = [〈ψi |ψj 〉〈φi |φj 〉], X(1) = [〈ψi |ψj 〉],
and Y (1) = [〈φi |φj 〉]; G(m+1) = [〈ψi |ψj 〉m+1

〈
P

(i)
k

∣∣P (j)

k

〉]
, G

(m+1)
A = [〈ψi |ψj 〉m+1

〈
P

(i)
k,A

∣∣P (j)

k,A

〉]
and G

(m)
B = [〈ψi |ψj 〉m

〈
P

(i)
k,B

∣∣P (j)

k,B

〉]
;

√
�k = diag

(
r

(1)
k , r

(2)
k

)
,
√

�k,A = diag
(
r

(1)
k,A, r

(2)
k,A

)
and√

�k,B = diag
(
r

(1)
k,B, r

(2)
k,B

)
. Furthermore, we note that the three matrices above are positive

semidefinite if and only if their determinants are nonnegative, respectively, that is,√√√√(
1 −

m∑
k=1

r
(1)
k

) (
1 −

m∑
k=1

r
(2)
k

)
−

∣∣∣∣∣αβ −
m∑

k=1

√
r

(1)
k r

(2)
k αk+1pk

∣∣∣∣∣ � 0, (36)

√√√√(
1 −

m∑
k=1

r
(1)
k,A

)(
1 −

m∑
k=1

r
(2)
k,A

)
−

∣∣∣∣∣α −
m∑

k=1

√
r

(1)
k,Ar

(2)
k,Aαk+1pk,A

∣∣∣∣∣ � 0, (37)

√√√√(
1 −

m∑
k=1

r
(1)
k,B

) (
1 −

m∑
k=1

r
(2)
k,B

)
−

∣∣∣∣∣β −
m∑

k=1

√
r

(1)
k,Br

(2)
k,Bαkpk,B

∣∣∣∣∣ � 0. (38)

If |β| >
∑m

k=1

√
r

(1)
k r

(2)
k |α|k , then, by taking appropriate amplitudes of pk , inequality (36) is

equivalent to √√√√(
1 −

m∑
k=1

r
(1)
k

) (
1 −

m∑
k=1

r
(2)
k

)
− |αβ| +

m∑
k=1

√
r

(1)
k r

(2)
k |α|k+1 � 0, (39)

analogously, if 1 >
∑m

k=1

√
r

(1)
k,Ar

(2)
k,A|α|k and |β| >

∑m
k=1

√
r

(1)
k,Br

(2)
k,B |α|k hold, respectively,

then correspondingly, inequalities (38), (39) are respectively equivalent to√√√√(
1 −

m∑
k=1

r
(1)
k,A

)(
1 −

m∑
k=1

r
(2)
k,A

)
− |α| +

m∑
k=1

√
r

(1)
k,Ar

(2)
k,A|α|k+1 � 0, (40)

√√√√(
1 −

m∑
k=1

r
(1)
k,B

) (
1 −

m∑
k=1

r
(2)
k,B

)
− |β| +

m∑
k=1

√
r

(1)
k,Br

(2)
k,B |α|k � 0. (41)

With input |ψi〉|φi〉, the efficiency of producing quantum superposition of multiple clones∑m
k=1 |ψi〉⊗(k+1) which Alice and Bob achieve via quantum channel can always be achieved

by a two-step cloning protocol in which Alice and Bob are only allowed to execute one-way
or two-way classical communication. This is described by the following theorem 1.
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Theorem 1. If there exists a unitary operator U such that equation (27) holds, then there are
unitary operators UA and UB satisfying equations (29) and (31), respectively, such that

m∑
k=1

r
(i)
k �

m∑
k=1

r
(i)
k,B +

(
1 −

m∑
k=1

r
(i)
k,B

)
m∑

k=1

r
(i)
k,A, (42)

for i = 1, 2.

Proof. As above, denote α = 〈ψ1|ψ2〉, β = 〈φ1|φ2〉. �

Case 1 |β| �
∑m

k=1

√
r

(1)
k r

(2)
k |α|k . In this case, we only take any r

(i)
k,B satisfying r

(i)
k,B � r

(i)
k

for k = 1, 2, . . . , m and
∑m

k=1 r
(i)
k,B = 1 (i = 1, 2). Clearly, |β| �

∑m
k=1

√
r

(1)
k,Br

(2)
k,B |α|k also

holds. Then it suffices to take appropriate pk,B such that β − ∑m
k=1

√
r

(1)
k,Br

(2)
k,Bαkpk,B = 0.

Thus, inequality (38) holds. By taking r
(i)
k,A = 0 (1 � k � m, 1 � i � 2), then inequality (37)

holds. So, the theorem is proved in this situation.

Case 2 |β| >
∑m

k=1

√
r

(1)
k r

(2)
k |α|k . We set a function F from [0, 1]m × [0, 1]m to [0, +∞) as

F(x1, x2, . . . , xm; y1, y2, . . . , ym) =
√(

1 − ∑m
k=1 xk

)(
1 − ∑m

k=1 yk

)
|β| − ∑m

k=1
√

xkyk|α|k . (43)

Clearly, the function F is continuous on [0, 1]m × [0, 1]m and

F(0, 0, . . . , 0; 0, 0, . . . , 0) = 1

|β| � 1, (44)

as well as, by inequality (39),

F
(
r

(1)
1 , r

(1)
2 , . . . , r(1)

m ; r
(2)
1 , r

(2)
2 , . . . , r(2)

m

)
� |α|. (45)

To prove the theorem, we somewhat change the function F to set up a new function H that
only has m variables at most. The main idea to establish H is to reduce the number 2m of the
variables in F to not more than m, and we present the way of constructing function H from
function F in detail:

(i) For 1 � k � m, if 0 �= r
(1)
k � r

(2)
k , then the pair of variables (xk, yk) in F will be replaced

by (xk, ckxk), where r
(2)
k

r
(1)
k

= ck � 1; if 0 = r
(1)
k � r

(2)
k , then the pair of variables (xk, yk)

in F will be replaced by the pair (0, 0) of constants.
(ii) For 1 � k � m, if r

(1)
k < r

(2)
k , we replace the pair of variables (xk, yk) in F by (c′

kyk, yk),

where c′
k = r

(1)
k

r
(2)
k

� 1.

By means of the above way to adjust and decrease those variables in the function F, we
obtain a new function H whose number of variables is at most m, instead of 2m, that is the
form: for zk ∈ {xk, yk}, 1 � k � m,

H(z1, z2, . . . , zm) = F(u1, u2, . . . , um; v1, v2, . . . , vm), (46)

where

(i) If 0 �= r
(1)
k � r

(2)
k , then zk = xk , and, uk = xk, vk = ckxk , where ck = r

(2)
k

r
(1)
k

� 1.

(ii) If 0 = r
(1)
k � r

(2)
k , then zk = uk = vk = 0.

(iii) If r
(1)
k

r
(2)
k

< 1, then zk = yk and uk = c′
kyk, vk = yk , where c′

k = r
(1)
k

r
(2)
k

.
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Without loss of generality, we suppose that always r
(1)
k � r

(2)
k , k = 1, 2, . . . , m. Then we

have

H(x1, x2, . . . , xm) = F(x1, x2, . . . , xm; c1x1, c2x2, . . . , cmxm), (47)

where when r
(1)
k = 0, xk ≡ 0, (k = 1, 2, . . . , m).

By inequalities (44) and (45),

H(0, 0, . . . , 0)

= F(0, 0, . . . , 0; 0, 0, . . . , 0) (48)

= 1

|β| � 1, (49)

and

H
(
r

(1)
1 , r

(1)
2 , . . . , r(1)

m

)
= F

(
r

(1)
1 , r

(1)
2 , . . . , r(1)

m ; r
(2)
1 , r

(2)
2 , . . . , r(2)

m

)
(50)

� |α|. (51)

Next we consider two scenarios to complete the proof: (I) If H
(
r

(1)
1 , r

(1)
2 , . . . , r(1)

m

)
� 1, then

F
(
r

(1)
1 , r

(1)
2 , . . . , r(1)

m ; r
(2)
1 , r

(2)
2 , . . . , r(2)

m

)
= H

(
r

(1)
1 , r

(1)
2 , . . . , r(1)

m

)
(52)

� 1, (53)

and, therefore, by equation (43) we have

F
(
r

(1)
1 , r

(1)
2 , . . . , r(1)

m ; r
(2)
1 , r

(2)
2 , . . . , r(2)

m

)

=
√(

1 − ∑m
k=1 r

(1)
k

)(
1 − ∑m

k=1 r
(2)
k

)
|β| − ∑m

k=1

√
r

(1)
k r

(2)
k |α|k

� 1. (54)

Therefore, by taking r
(i)
k,B = r

(i)
k , (k = 1, 2, . . . , m; i = 1, 2), inequality (41) holds. As a

result, there exist unitary operators UA and UB such that equations (29), (31) hold, in which
we can choose r

(i)
k,A = 0 and r

(i)
k,B = r

(i)
k , (k = 1, 2, . . . , m; i = 1, 2). In this case, the theorem

is proved.
(II) If H

(
r

(1)
1 , r

(1)
2 , . . . , r(1)

m

)
< 1, then, together with H(0, 0, . . . , 0) � 1 (i.e.,

equation (49)), by intermediate value theorem of continuous functions, there exist r
(1)
k,B such

that

0 � r
(1)
k,B � r

(1)
k , (k = 1, 2, . . . , m), (55)

and

H
(
r

(1)
1,B, r

(1)
2,B, . . . , r

(1)
m,B

) = 1. (56)

Now, for k = 1, 2, . . . , m, we take

r
(2)
k,B =




0, if r
(1)
k = 0,

r
(2)
k

r
(1)
k

r
(1)
k,B, otherwise.

(57)
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Denoting

ck =



0, if r
(1)
k = 0,

r
(2)
k

r
(1)
k

, otherwise,

then clearly we have

r
(2)
k,B = ckr

(1)
k,B, r

(2)
k = ckr

(1)
k , (58)

for k = 1, 2, . . . , m and i = 1, 2; as well, by inequalities (55), (58),
∑m

k=1 r
(i)
k,B �

∑m
k=1 r

(i)
k

holds for i = 1, 2. Now we take

r
(i)
k,A = r

(i)
k − r

(i)
k,B

1 − ∑m
k=1 r

(i)
k,B

, (i = 1, 2), (59)

then

√(
1 − r

(1)
k,A

)(
1 − r

(2)
k,A

) =
√√√√ (

1 − ∑m
k=1 r

(1)
k

)(
1 − ∑m

k=1 r
(2)
k

)
(
1 − ∑m

k=1 r
(1)
k,B

)(
1 − ∑m

k=1 r
(2)
k,B

)

�
|β| − ∑m

k=1

√
r

(1)
k r

(2)
k |α|k

|β| − ∑m
k=1

√
r

(1)
k,Br

(2)
k,B |α|k

|α|, (60)

and √
r

(1)
k,Ar

(2)
k,A =

(
r

(1)
k − r

(1)
k,B

)(
r

(2)
k − r

(2)
k,B

)
|β| − ∑m

k=1

√
r

(1)
k,Br

(2)
k,B |α|k

. (61)

By inequality (60) and equation (61), we have√√√√(
1 −

m∑
k=1

r
(1)
k,A

) (
1 −

m∑
k=1

r
(2)
k,A

)
− |α| +

m∑
k=1

√
r

(1)
k,Ar

(2)
k,A|α|k+1

�
∑m

k=1

(√
r

(1)
k,Br

(2)
k,B −

√
r

(1)
k r

(2)
k +

√(
r

(1)
k − r

(1)
k,B

)(
r

(2)
k − r

(2)
k,B

))|α|k+1

|β| − ∑m
k=1

√
r

(1)
k,Br

(2)
k,B

. (62)

Due to equation (58), i.e. r
(2)
k,B = ckr

(1)
k,B, r

(2)
k = ckr

(1)
k , we have√(

r
(1)
k − r

(1)
k,B

)(
r

(2)
k − r

(2)
k,B

) =
√

r
(1)
k r

(2)
k −

√
r

(1)
k,Br

(2)
k,B . (63)

By combining equation (63) and inequality (62), we conclude that√√√√(
1 −

m∑
k=1

r
(1)
k,A

)(
1 −

m∑
k=1

r
(2)
k,A

)
− |α| +

m∑
k=1

√
r

(1)
k,Ar

(2)
k,A|α|k+1 � 0. (64)

Due to the above conditions, inequalities (64) and (37) are equivalent, and, therefore, the proof
has been completed.

Remark 1. Theorem 1 shows that the two-step cloning protocol in terms of classical one-way
or two-way communication can achieve the optimal efficiency by the NCMSI. This theorem
generalizes theorem 2 of [38]. Indeed, for i = 1, 2, given integer m > 0, if we take r

(i)
k = 0



Novel cloning machine with supplementary information 5147

for any k �= m, then from the above proof we can also take r
(i)
k,B = 0 and r

(i)
k,A = 0 for any

k �= m. In this case, theorem 1 reduces to theorem 2 of [38] as stated in the beginning of this
section. As well, due to limm→∞〈ψi |ψj 〉m = 0 for any i �= j , when m → ∞ the unitary
transformation

U(|ψi〉|φi〉|P0〉) =
√

r
(i)
m |ψi〉⊗(m+1)|0〉⊗(m−k)

∣∣P (i)
m

〉
+

N∑
l=m+1

√
f

(i)
l |�l〉AB |Pl〉 (65)

carries out the unambiguous discrimination of the set {|ψ1〉|φ1〉, |ψ2〉|φ2〉}. Indeed, firstly, if
|φ1〉 and |φ2〉 are orthogonal, then in inequality (36) we take r(1)

m = r(2)
m = 1 and pm = 0,

which is in accord with the result that {|ψ1〉|φ1〉, |ψ2〉|φ2〉} can be exactly discriminated thanks
to the orthogonality. If |φ1〉 and |φ2〉 are nonorthogonal, then |β| > 0, and we can take m big
enough such that |β| > |α|m. Therefore, by using inequality (36) we have that

r(1)
m + r(2)

m

2
� 1 − |αβ|

1 − |α|m|pm| . (66)

By taking pm = 0, we obtain that

r(1)
m + r(2)

m

2
� 1 − |αβ|. (67)

This has been dealt with by Chen and Yang [39] for achieving the optimal unambiguous
discrimination of any two nonorthogonal pure product multipartite states with any a priori
probabilities via local operation and classical communication.

Next we may ask whether or not the two-step protocol is strictly stronger than the NCMSI.
By the following theorem 2 we show that the optimal efficiency obtained by the above two-step
cloning protocol can also be achieved by some NCMSI. Therefore, they indeed have the same
optimal efficiency.

Theorem 2. For any unitary operators UA and UB satisfying equations (29), (31), there is a
unitary operator U satisfying equation (27), such that

r
(i)
k = r

(i)
k,B +

(
1 −

m∑
l=1

r
(i)
l,B

)
r

(i)
k,B, (68)

for k = 1, 2, . . . , m and i = 1, 2.

Proof. Leave α and β as they are. If |β| �
∑m

k=1

√
r

(1)
k r

(2)
k |α|k , where r

(i)
k = r

(i)
k,B

+
(
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l=1 r
(i)
l,B

)
r

(i)
k,B , then inequality (36) is always satisfied by taking appropriate pk , i.e.

the states
∣∣P (i)

k

〉
of the probe device for k = 1, 2, . . . , m and i = 1, 2. Hence, we assume that

|β| >
∑m

k=1

√
r

(1)
k r

(2)
k |α|k , in the following. First we note that√√√√(
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) (
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k=1

r
(2)
k,A

)√√√√(
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) (
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=
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(1)
k

) (
1 −

m∑
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r
(2)
k

)
. (69)
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Since |β| >
∑m

k=1

√
r

(1)
k r

(2)
k |α|k , inequalities (40), (41) hold, and by these two inequalities,

we have√√√√(
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Therefore, to show inequality (39), it suffices to verify that(
|α| −

m∑
k=1

√
r

(1)
k,Ar

(2)
k,A|α|k+1

)(
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In terms of equation (70), inequality (71) is equivalent to
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By using inequality (41), it is enough to show that
m∑
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We can easily check that for any k = 1, 2, . . . , m,
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which follows from the inequality
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Therefore, we complete the proof. �

Remark 2. Since cloning only one multiple copies is a special case of cloning superposition
of multiple clones, theorem 2 above shows that in theorem 2 of [38], probabilistic cloning
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with supplementary information and the two-step cloning protocol are equivalent. Therefore
this completes theorem 2 of [38].

Remark 3. If |ψ1〉, |ψ2〉 are linearly independent, and |φ1〉, |φ2〉 are linearly dependent, then
by virtue of lemma 1 in [38], the success probability of Bob running the cloning device
described by the unitary operator UB is zero. Therefore, in this case, the NCMSI has the
same cloning efficiency as the NCM. However, if the supplementary information |φ1〉, |φ2〉 are
linearly independent, then the success probabilities in the cloning machine described by UB

are likely bigger than zero, and, thus, from theorem 2 it follows that the success probability of
the NCMSI for cloning is bigger than the NCM [13].

4. Concluding remarks

We have dealt with the novel cloning machine with the help of supplementary information
(NCMSI) for producing quantum superposition of multiple copies. When two holders, say
Alice and Bob, possess respectively the original and the supplementary information, we have
derived that the optimal efficiencies of cloning achieved via quantum communication and via
classical one-way or two-way communication between the two parties in these devices are
indeed equivalent. Therefore, the NCMSI for producing quantum superposition of multiple
copies may have bigger success probability than the NCM [13]. However, by classical
communication we do not know how to obtain all the copies together in a quantum computer,
so, in practice we may use the scenario of quantum communication, i.e. the NCMSI.

As stated in section 1, probabilistic cloning may get precise copies with certain probability,
so, improving the success ratio is of importance. We hope that our results would provide
some useful ideas in preserving important quantum information, parallel storage of quantum
information in a quantum computer and quantum cryptography.

When cloning n states with n � 3, Azuma et al [38] demonstrated that the optimal
efficiency of copying achieved via quantum communication between the original and the
supplementary parties sometimes cannot be accomplished by using only classical channel.
Then an interesting problem is what is the sufficient and necessary condition for retaining the
equivalence as we proved in this paper. A possible method is to combine matrix theory [40]
and the present paper. Moreover, if the supplementary information is given as a mixed state or
we have multiple supplementary information, then the probabilistic or novel cloning devices
are still worth considering. We would like to explore these questions in future.
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